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Abstract

The Naval Space Surveillance Center �NAVSPASUR� uses an analytic satellite motion
model based on the Brouwer � Lyddane theory to track objects orbiting the Earth� In
this paper we develop several parallel algorithms based on this model� These have been
implemented on the INTEL iPSC�	 hypercube multi�computer� The speed�up and e
ciency
of these algorithms will be obtained� We show that the best of these algorithms achieves
��
 e
ciency if one uses a ���node hypercube�

Introduction

The Naval Space Surveillance Center �NAVSPASUR� uses an analytic satellite motion model
to track objects orbiting the Earth� This model is implemented in the Fortran subroutine
PPT	� This subroutine predicts an arti�cial satellites�s position and velocity vectors at a
selected time to aid in the tracking endeavor� Several calls to the subroutine may be required
to aid in the identi�cation of one object� A substantial increase in the number of objects or a
desire to increase the accuracy of the model will require a similar increase in computer time�
Parallel computing o�ers one option to decrease the computation time without sacri�cing
accuracy�

For a multicomputer� the user must partition the problem among the processors� Two
decompositions are possible and will be discussed here� control decomposition and domain
decomposition�

In this paper we determine the parallel computing potential of the current NAVSPASUR
model as applied to a MIMD computer and simulated on an iPSC�	 hypercube� In the
next section� we develop a control decomposition method and discuss the speed�up attained
by our numerical experiments on a ��node hypercube� In section �� we discuss a domain
decomposition method� We show that domain decomposition yields higher speed�up� We
also develop a model showing that �� nodes yield optimal e
ciency �almost ��
� and discuss
how to utilize larger dimension hypercubes without losing e
ciency�

Control Decomposition

Control decomposition is the strategy of dividing tasks among the nodes� This is recom�
mended for problems with irregular data structures or unpredictable control �ows �see Paral�
lel Programming Primer pp� ��� in ����� The exact tasks required of each node are explicitly
stated in the parallel program�

In order to predict a satellite�s state vector considering the secular and periodic correction
terms due to the zonal harmonics and a correction term for each element due to the sectoral
harmonics� the NAVSPASUR model requires the completion of �� major tasks� These tasks
are described by Phipps ����	�� The �rst step in partitioning these tasks among the nodes

	



Table� � Concurrent NAVSPASUR Orbit Model Tasks
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was to determine which tasks could be completed concurrently� Concurrency was determined
by the development of a hierarchy of the formulas used by the NAVSPASUR model� Each
of the individual tasks were listed with its respective required input� Tasks which could be
executed concurrently were listed on the same row of Table ��

Remark� The equation numbers in the table refer to Phipps ����	� �
From this table� one can see that the number of tasks that could be computed concur�

rently at each level ranges from 	 to ��� Additionally� the computational requirements vary
considerably among the tasks� for example� the compuational requirement for the solution
of Kepler�s equation by Ste�ensen�s method depends on the number of iterations necessary
to achieve convergence� This variance in the number of operations required by the various
tasks presented a potential problem in load balancing� In other words� bottlenecks are due
to the fact that nodes are awaiting to receive results from computations performed by other
processors� It was shown by Phipps ����	� that a manager�worker algorithm �to achieve
load balancing� will increase the communication and thus decrease e
ciency� Thus pre�
scheduling of tasks is done� The optimal number of nodes is found to be four� In Table 	�
we list the tasks scheduled for each node� A computer program� P �T � �� was developed
for the hypercube� Experiments with this program show that the computation time �tc� for
P �T � � is about half that of PPT	� Unfortunately� the communication time �tm� was so
high that the total time for P �T � � was larger �see table ���

One method to reduce the ratio of communication to computation is by computing the
path of n satellites at the same time� In other words� currently the program PPT	 reads
the initial values of one satellite and computes its position at a given time� and then moves
on to the computation of the next satellite position� Since each communication requires
an overhead� it is cheaper to send a long message� To arrange that� we suggest that the
program reads initial values of several satellites and computes the paths concurrently� This
will require the same number of messages� but each one is n times longer� The e
ciency�
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Table� 	 Tasks for each node

Node � Node � Node 	 Node �
Recover a�� Compute T	
��� �ops ��� �ops
send � bytes send � bytes
Compute secular Compute secular Compute long period Compute secular
corrections � �� a� and correction � g corection � z correction � h
e
�� �ops �� �ops ��� �ops �� �ops
send 	� bytes send � bytes send � bytes
Compute long period Compute long period Solve Kepler�s Compute sectoral
correction � � corrections � e and I Equation terms
�� �ops �� �ops � ��� �ops �	� �ops

send �� bytes
Compute short period Compute short period Compute short period Compute long period
correction � � corrections � e and I correction � z correction � h
�� �ops �� �ops �� �ops �� �ops
send � bytes send �� bytes send � bytes
Compute short period Compute short period
correction � a correction � h
	� �ops �	 �ops

send 	� bytes
Solve Kepler�s
Equation
� ��� �ops
Collect all terms
Compute state vector
�� �ops

�



Table� � P�
T� � Execution Time Breakdown
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the number n� the limit is
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p
�
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Using the values in the above table one �nds that the e
ciency is bounded by ����� This
is the best we were able to achieve� The reason is that the computation time for � satellite
is ��� sec on � nodes and ���	 sce on � node� Thus the maximum achievable e
ciency is
bounded by ��� Since this is not high enough� we have tried domain decomposition� This is
discussed in the next section�

Domain Decomposition

The strategy of domain decomposition is to reduce the computation time by the concurrent
computation of several satellites� state vectors� Each node of the hypercube would complete
identical tasks on di�erent satellite data sets� simultaneously�

Unlike the application of the control decomposition strategy� the application of the do�
main decomposition strategy to the NAVSPASUR model was seemingly less arduous� First�
because each node propagates satellite data sets independent of the other nodes� there exists
no requirement for communication or synchronization among the nodes� This lack of com�
munication simpli�es the load balancing and sequential bottleneck problems present in the
P �T � � parallel algorithm�

Second� because each node may perform the satellite state vector prediction tasks serially�
the existing subroutine PPT	 may be used with only minor modi�cations� Developing a
parallel algorithm for predicting an individual satellite�s state vector was a major task for the
control decomposition strategy� Additionally� by using the existing PPT	 code� the other

�
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Figure �� P�T Algorithm

tasks completed by PPT	 may be requested by the user using the same control variables
as used by the original PPT	 subroutine� The P �T � � program set was restricted to only
predicting a satellite�s state vector�

Finally� by using the serial subroutine PPT	� this strategy may be reduced to only
developing an algorithm to distribute the data in a timely manner� Maximum e
ciency will
be achieved if the nodes do not have to wait for satellite data to propagate�

Intuitively� this strategy seems perfectly parallelizable� Although the various tasks per�
formed by PPT	 require di�erent computation times� the total execution time for each node
will be essentially the same if it is assumed that the various tasks are randomly distributed
throughout the input data sets� The concern for this algorithm was the potential sequential
bottlenecks at input�output portions of the program set� Reading and writing to external
�les can be very time consuming� In addition to the actual time spent reading�writing to an
external �le� a certain amount of time is spent to access the �le� In order to minimize this
time� the number of calls to read�write to a �le should be minimized�

With the speci�c iPSC�	 hypercube available� input�output is completed sequentially�
Each node must compete with the other nodes to read and write to external �les� To
minimize time lost to accessing the �le cataloging the set of satellites� a node was devoted
to both the reading�distributing of input satellite data and to the collecting�writing of the
results� The idea of using a single node to read the data and a single node to subsequent
write the output is simple to implement and proved to be fastest method to overcome the
bottlenecks with the input�output� The remaining nodes of the hypercube implement the
NAVSPASUR model using a slightly modi�ed PPT	� The diagram in Figure � depicts how
the satellite data is distributed� The cost of using this simple algorithm to distribute and
collect the data is the loss of two nodes� The only restriction on the size of the hypercube
required by P �T is that the attached cube must contain at least four nodes to achieve any
speedup�

The graph in Figure 	 depicts the mean execution time for P �T versus the number
of satellites propagated using hypercubes of four and eight nodes respectively� P �T was

�



Table� � Speedup and E
ciency Comparison

P
�
T � of satellites Sp Ep

� nodes ��	� ���� ���
��� ���� ���
�	 ���	 ���

� nodes ��	� ���� ���
��� ���� ���
�	 ���	 ���

successful in reducing the overall execution time to propagate several satellites� Table �
shows the speedup and e
ciency of P �T for a various number of satellites� As seen in
Table �� the speedup achieved using all eight nodes of the hypercube was approximately
three times larger than the speedup achieved using four nodes� With this parallel algorithm
using six �working� nodes for an eight processor hypercube and only two �working� nodes
for a four processor hypercube� an increase in speedup by approximately a factor of three
was expected� In other words� since two processors are tied to input�output and cannot be
used for computation� one should expect the gain to increase until we recover the loss of
those two� More notable was the increase in e
ciency using eight versus four nodes� The
e
ciency increased from ��� to ���� This increase in e
ciency indicates that P �T applied to
a hypercube of greater dimension could yield even greater speedup and e
ciency�

Table � also indicates that P �T performance increased somewhat with an increase in the
total number of satellites propagated� Because with this parallel algorithm the computation
to communication ratio does not vary with the number of satellites� this small increase in
performance must be primarily due to the diminishing impact of the algorithm�s overhead
on total execution time� This overhead includes one additional message containing the
total number of satellites to propagate from the distributing node to the other nodes� some
small computations by working nodes to determine number of data sets to receive� and a
halting message sent by the collecting node to the host once all of the nodes are �nished�
Because these additional messages and computations are only completed once in the program�
the time cost associated with this overhead becomes negligible as the number of satellites
propagated is increased� The speedup and e
ciency remained fairly constant for greater
than ��� satellites�

The performance results of this algorithm using only four and eight nodes indicated a
potential increase in both speedup and e
ciency if this algorithm could be applied to a
hypercube of greater dimension� Because the number of working nodes is not �xed for this
algorithm� P �T could be applied easily to any size hypercube with no modi�cations�

The e
ciency of the algorithm should increase with the number of processors until the
time to distribute a separate satellite data to each working node exceeds the time required
by a node to propagate a single satellite� A model was used to estimate the optimal number
of nodes� The total execution time for P �T to propagate n satellites with p processors� t�p��

�
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Figure 	� Theoretical Speedup for Propagating 	��� Satellites

can be modelled by
t�p� � tw��p� � tw��p� � tc�p� �

where tw��p� is the time the last node must wait to receive its �rst satellite data set� tw��p� is
the total time the last node must wait to receive all of its subsequent satellite data sets� and
tc�p� is the computation time for each node to propagate its share of the n satellites� For
this algorithm� there are p � 	 working nodes� Denoting the time to send a single message
between the distributing node and a working node as tm���� the tw��p� may be modeled by
the following�

tw��p� � �p � ��tm���

where tm��� denotes the time to send a single message between the distributing and working
nodes� For the iPSC�	 it was found that

tm��� �� ����msec �

The wait time tw� is zero unless the number of working nodes is large enough� i�e�

tw��p� �

�
� tw��p� � t�
�tw��p� � t��

h
n

p��
� �

i
� tw��p� � t�

where t� is the computation time to propagate a single satellite ����	 msec�� Note that the
factor n

p��
� � is the number of subsequent satellite data sets� The computation time tc is

given by

tc�p� �
n

p � 	
t� �

Therefore� the speedup and e
ciency are given by

Sp �
n � t�

tw��p� � tw��p� � tc�p�
�
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Figure �� Theoretical E
ciency for Propagating 	��� Satellites

Ep �
n � t�

p �tw��p� � tw��p� � tc�p��
�

Figures 	 and � depict these theoretical estimates of Sp and Ep for propagating 	��� satellites
using � to ��	� processors� Using the above model� P �T is capable of achieving a maximum
speedup of ����� and an e
ciency of ���� using �� nodes�

Conclusions

In this paper we have developed two ideas� control decomposition and domain decomposition�
to parallelize the NAVSPASUR satellite motion model� The control decomposition idea
is not e
cient because the model is not computationally intensive enough� The domain
decomposition can reach an e
ciency of ��
 when using a �� � node hypercube� There
are many orbit models in use nowadays� Several questions can be raised as a result of
this research� How should an orbit theory be organized to take an advantage of MIMD
computers� How should a semianalytic theory be organized for parallel computers� We are
now working on a parallel version for the analytical model SGP� in use by USSPACECOM
and for the semianalytic satellite model developed at Draper Laboratory�
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